Analogues of the~rational series in the~locally convex space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 955-976.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the paper is to study the conditions of expansion of vectors of a complete locally convex space $H$ in a series of the form $\sum\limits_{j=1}^{\infty}d_{j}f(\lambda_{j})$, where $f(\lambda)$ is an analytical in the circle $|\lambda|1$ vector-valued function, the values of which are vectors from $H$, $|\lambda_{j}|\nearrow 1$. The proved theorems generalize the well-known results about expansion of analytical functions in a rational series of the form $\sum\limits_{j=1}^{\infty}\frac{d_{j}}{1-\lambda_{j}z}$ and also the results of the author about expansion of analytical functions in a series of the form $\sum\limits_{j=1}^{\infty}d_{j}f(\lambda_{j}z)$, where $f(z)$ is a function analytical in the unit circle.
@article{FPM_2000_6_4_a0,
     author = {E. N. Alekseeva},
     title = {Analogues of the~rational series in the~locally convex space},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {955--976},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a0/}
}
TY  - JOUR
AU  - E. N. Alekseeva
TI  - Analogues of the~rational series in the~locally convex space
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 955
EP  - 976
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a0/
LA  - ru
ID  - FPM_2000_6_4_a0
ER  - 
%0 Journal Article
%A E. N. Alekseeva
%T Analogues of the~rational series in the~locally convex space
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 955-976
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a0/
%G ru
%F FPM_2000_6_4_a0
E. N. Alekseeva. Analogues of the~rational series in the~locally convex space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 955-976. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a0/