Roots in the universal covering group of the unimodular $2\times2$-matrix group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 757-776
Cet article a éte moissonné depuis la source Math-Net.Ru
The equation $x^n=g$ has been solved in the universal covering group $\mathbb G$ of the group $\mathop{\mathrm{SL}}(2)$. If $g$ is not a central element, then the $n$-th root of $g$ exists and is unique. In the case when $g$ belongs to the center of the universal covering $\mathbb G$, the set of all solutions may be empty or may form a two-dimensional submanifold of the manifold $\mathbb G$. The following two questions are considered. (A) How wide may be this submanifold from the algebraic point of view? (B) How can we complete the group $\mathbb G$ with absent roots? Of the results close to the main theorem one can mention the following: the semigroup $\mathop{\mathrm{SL}}(2)^+$, consisting of all matrices $A\in\mathop{\mathrm{SL}}(2)$ with non-negative coefficients, is complete, that is one can derive any root from any element.
@article{FPM_2000_6_3_a8,
author = {T. V. Dubrovina and N. I. Dubrovin},
title = {Roots in the universal covering group of the unimodular $2\times2$-matrix group},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {757--776},
year = {2000},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a8/}
}
TY - JOUR AU - T. V. Dubrovina AU - N. I. Dubrovin TI - Roots in the universal covering group of the unimodular $2\times2$-matrix group JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 757 EP - 776 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a8/ LA - ru ID - FPM_2000_6_3_a8 ER -
T. V. Dubrovina; N. I. Dubrovin. Roots in the universal covering group of the unimodular $2\times2$-matrix group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 757-776. http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a8/