Roots in the universal covering group of the unimodular $2\times2$-matrix group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 757-776.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equation $x^n=g$ has been solved in the universal covering group $\mathbb G$ of the group $\mathop{\mathrm{SL}}(2)$. If $g$ is not a central element, then the $n$-th root of $g$ exists and is unique. In the case when $g$ belongs to the center of the universal covering $\mathbb G$, the set of all solutions may be empty or may form a two-dimensional submanifold of the manifold $\mathbb G$. The following two questions are considered. (A) How wide may be this submanifold from the algebraic point of view? (B) How can we complete the group $\mathbb G$ with absent roots? Of the results close to the main theorem one can mention the following: the semigroup $\mathop{\mathrm{SL}}(2)^+$, consisting of all matrices $A\in\mathop{\mathrm{SL}}(2)$ with non-negative coefficients, is complete, that is one can derive any root from any element.
@article{FPM_2000_6_3_a8,
     author = {T. V. Dubrovina and N. I. Dubrovin},
     title = {Roots in the universal covering group of the unimodular $2\times2$-matrix group},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {757--776},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a8/}
}
TY  - JOUR
AU  - T. V. Dubrovina
AU  - N. I. Dubrovin
TI  - Roots in the universal covering group of the unimodular $2\times2$-matrix group
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 757
EP  - 776
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a8/
LA  - ru
ID  - FPM_2000_6_3_a8
ER  - 
%0 Journal Article
%A T. V. Dubrovina
%A N. I. Dubrovin
%T Roots in the universal covering group of the unimodular $2\times2$-matrix group
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 757-776
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a8/
%G ru
%F FPM_2000_6_3_a8
T. V. Dubrovina; N. I. Dubrovin. Roots in the universal covering group of the unimodular $2\times2$-matrix group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 757-776. http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a8/