Gröbner and Gröbner–Shirshov bases in algebra and conformal algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 669-706
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the Gröbner–Shirshov bases theory is regularly presented for commutative, non-commutative, Lie and conformal algebras. The general form of Composition-Diamond lemma for conformal relations is stated. We have made a review of some results obtained with Gröbner–Shirshov bases of usual and conformal algebras. It is proved that every finitely generated commutative conformal algebra is Noetherian, an analogue of Specht problem is considered for commutative conformal algebras.
@article{FPM_2000_6_3_a3,
author = {L. A. Bokut' and Yu. Fong and W. Ke and P. S. Kolesnikov},
title = {Gr\"obner and {Gr\"obner{\textendash}Shirshov} bases in algebra and conformal algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {669--706},
year = {2000},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a3/}
}
TY - JOUR AU - L. A. Bokut' AU - Yu. Fong AU - W. Ke AU - P. S. Kolesnikov TI - Gröbner and Gröbner–Shirshov bases in algebra and conformal algebras JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 669 EP - 706 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a3/ LA - ru ID - FPM_2000_6_3_a3 ER -
L. A. Bokut'; Yu. Fong; W. Ke; P. S. Kolesnikov. Gröbner and Gröbner–Shirshov bases in algebra and conformal algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 669-706. http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a3/