Gröbner and Gröbner–Shirshov bases in algebra and conformal algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 669-706 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the Gröbner–Shirshov bases theory is regularly presented for commutative, non-commutative, Lie and conformal algebras. The general form of Composition-Diamond lemma for conformal relations is stated. We have made a review of some results obtained with Gröbner–Shirshov bases of usual and conformal algebras. It is proved that every finitely generated commutative conformal algebra is Noetherian, an analogue of Specht problem is considered for commutative conformal algebras.
@article{FPM_2000_6_3_a3,
     author = {L. A. Bokut' and Yu. Fong and W. Ke and P. S. Kolesnikov},
     title = {Gr\"obner and {Gr\"obner{\textendash}Shirshov} bases in algebra and conformal algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {669--706},
     year = {2000},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a3/}
}
TY  - JOUR
AU  - L. A. Bokut'
AU  - Yu. Fong
AU  - W. Ke
AU  - P. S. Kolesnikov
TI  - Gröbner and Gröbner–Shirshov bases in algebra and conformal algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 669
EP  - 706
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a3/
LA  - ru
ID  - FPM_2000_6_3_a3
ER  - 
%0 Journal Article
%A L. A. Bokut'
%A Yu. Fong
%A W. Ke
%A P. S. Kolesnikov
%T Gröbner and Gröbner–Shirshov bases in algebra and conformal algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 669-706
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a3/
%G ru
%F FPM_2000_6_3_a3
L. A. Bokut'; Yu. Fong; W. Ke; P. S. Kolesnikov. Gröbner and Gröbner–Shirshov bases in algebra and conformal algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 669-706. http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a3/