Exponential Diophantine equations in rings of positive characteristic
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 649-668
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work we prove the algorithmical solvability of the exponential-Diophan-tine equations in rings represented by matrices over fields of positive characteristic. Consider the system of exponential-Diophantine equations $$ \sum_{i=1}^{s}P_{ij}(n_1,\ldots,n_t)b_{ij0}a_{ij1}^{n_1}b_{ij1}\ldots a_{ijt}^{n_t}b_{ijt}=0 $$ where $b_{ijk},a_{ijk}$ are constants from matrix ring of characteristic $p$, $n_i$ are indeterminates. For any solution $\langle n_1,\ldots,n_t \rangle$ of the system we construct the word (over alphabet which contains $p^t$ symbols) $\overline\alpha_0\ldots\overline\alpha_q$, where $\overline\alpha_i$ is a $t$-tuple $\langle n_1^{(i)},\ldots,n_t^{(i)}\rangle$, $n^{(i)}$ is the $i$-th digit in the $p$-adic representation of $n$. The main result of this work is: the set of words, corresponding in this sense to the solutions of the system of exponential-Diophantine equations is a regular language (i. e. recognizible by a finite automaton). There is an effective algorithm which calculates this language.
@article{FPM_2000_6_3_a2,
author = {A. Ya. Belov and A. A. Chilikov},
title = {Exponential {Diophantine} equations in rings of positive characteristic},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {649--668},
year = {2000},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a2/}
}
A. Ya. Belov; A. A. Chilikov. Exponential Diophantine equations in rings of positive characteristic. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 649-668. http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a2/