Projective modules over bounded Dedekind rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 903-911
Voir la notice de l'article provenant de la source Math-Net.Ru
If $A$ is a bounded Dedekind prime ring and $M$ is an $A$-module, then $M$ is a projective module if and only if $M$ is a $\pi$-projective nontorsion module, and either the module $M$ is reduced, or $A$ is a simple Artinian ring.
@article{FPM_2000_6_3_a19,
author = {A. A. Tuganbaev},
title = {Projective modules over bounded {Dedekind} rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {903--911},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a19/}
}
A. A. Tuganbaev. Projective modules over bounded Dedekind rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 903-911. http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a19/