Projective modules over bounded Dedekind rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 903-911.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $A$ is a bounded Dedekind prime ring and $M$ is an $A$-module, then $M$ is a projective module if and only if $M$ is a $\pi$-projective nontorsion module, and either the module $M$ is reduced, or $A$ is a simple Artinian ring.
@article{FPM_2000_6_3_a19,
     author = {A. A. Tuganbaev},
     title = {Projective modules over bounded {Dedekind} rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {903--911},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a19/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Projective modules over bounded Dedekind rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 903
EP  - 911
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a19/
LA  - ru
ID  - FPM_2000_6_3_a19
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Projective modules over bounded Dedekind rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 903-911
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a19/
%G ru
%F FPM_2000_6_3_a19
A. A. Tuganbaev. Projective modules over bounded Dedekind rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 903-911. http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a19/