On a~conjecture of Rydberg: $(e/c)/(h/e)=\pi/\textup{(unidentified expression)}$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 873-874.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a descriptive expression for the hyperfine structure constant.
@article{FPM_2000_6_3_a16,
     author = {Yu. P. Razmyslov},
     title = {On a~conjecture of {Rydberg:} $(e/c)/(h/e)=\pi/\textup{(unidentified expression)}$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {873--874},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a16/}
}
TY  - JOUR
AU  - Yu. P. Razmyslov
TI  - On a~conjecture of Rydberg: $(e/c)/(h/e)=\pi/\textup{(unidentified expression)}$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 873
EP  - 874
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a16/
LA  - ru
ID  - FPM_2000_6_3_a16
ER  - 
%0 Journal Article
%A Yu. P. Razmyslov
%T On a~conjecture of Rydberg: $(e/c)/(h/e)=\pi/\textup{(unidentified expression)}$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 873-874
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a16/
%G ru
%F FPM_2000_6_3_a16
Yu. P. Razmyslov. On a~conjecture of Rydberg: $(e/c)/(h/e)=\pi/\textup{(unidentified expression)}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 873-874. http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a16/