On Poisson--Abel method of summing up Fourier series with respect to multiplicative systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 485-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sufficient condition of Poisson–Abel summability of Fourier series with respect to multiplicative systems is obtained. If a sequence $p_n$ is not bounded, for any sequence $\omega_n$, decreasing to zero and not being $o(\frac{1}{\ln p_{n+1}})$, the continuous function $f(t)$ with $\omega_n(f)=\omega_n$, Fourier series of which is not Poisson–Abel summable at the point, is constructed.
@article{FPM_2000_6_2_a9,
     author = {O. P. Naumov},
     title = {On {Poisson--Abel} method of summing up {Fourier} series with respect to multiplicative systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {485--500},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a9/}
}
TY  - JOUR
AU  - O. P. Naumov
TI  - On Poisson--Abel method of summing up Fourier series with respect to multiplicative systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 485
EP  - 500
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a9/
LA  - ru
ID  - FPM_2000_6_2_a9
ER  - 
%0 Journal Article
%A O. P. Naumov
%T On Poisson--Abel method of summing up Fourier series with respect to multiplicative systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 485-500
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a9/
%G ru
%F FPM_2000_6_2_a9
O. P. Naumov. On Poisson--Abel method of summing up Fourier series with respect to multiplicative systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 485-500. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a9/