On Poisson–Abel method of summing up Fourier series with respect to multiplicative systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 485-500
Cet article a éte moissonné depuis la source Math-Net.Ru
The sufficient condition of Poisson–Abel summability of Fourier series with respect to multiplicative systems is obtained. If a sequence $p_n$ is not bounded, for any sequence $\omega_n$, decreasing to zero and not being $o(\frac{1}{\ln p_{n+1}})$, the continuous function $f(t)$ with $\omega_n(f)=\omega_n$, Fourier series of which is not Poisson–Abel summable at the point, is constructed.
@article{FPM_2000_6_2_a9,
author = {O. P. Naumov},
title = {On {Poisson{\textendash}Abel} method of summing up {Fourier} series with respect to multiplicative systems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {485--500},
year = {2000},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a9/}
}
O. P. Naumov. On Poisson–Abel method of summing up Fourier series with respect to multiplicative systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 485-500. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a9/