Non-Archimedean polyhedra decompositions of ultrauniform spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 455-475
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is devoted to investigation of the question about spectral decomposition of ultrauniform spaces with polyhedra over non-Archimedean locally compact fields. Theorems about decompositions of complete ultrametric spaces and ultrauniform spaces are given. Decompositions of incomplete ultrauniform spaces are investigated together with total polyhedra decompositions. Cases are elucidated, when polyhedra are finite-dimensional over non-Archimedean fields $L$.
@article{FPM_2000_6_2_a7,
author = {S. V. Lyudkovskii},
title = {Non-Archimedean polyhedra decompositions of ultrauniform spaces},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {455--475},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a7/}
}
S. V. Lyudkovskii. Non-Archimedean polyhedra decompositions of ultrauniform spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 455-475. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a7/