On the existence of the classical solution of the hyperbolic Monge--Ampere equation on the whole
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 379-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for the hyperbolic Monge–Ampere equation is considered. Sufficient conditions for the existence of the classical solution on the whole are formulated.
@article{FPM_2000_6_2_a2,
     author = {Yu. N. Bratkov},
     title = {On the existence of the classical solution of the hyperbolic {Monge--Ampere} equation on the whole},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {379--390},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a2/}
}
TY  - JOUR
AU  - Yu. N. Bratkov
TI  - On the existence of the classical solution of the hyperbolic Monge--Ampere equation on the whole
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 379
EP  - 390
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a2/
LA  - ru
ID  - FPM_2000_6_2_a2
ER  - 
%0 Journal Article
%A Yu. N. Bratkov
%T On the existence of the classical solution of the hyperbolic Monge--Ampere equation on the whole
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 379-390
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a2/
%G ru
%F FPM_2000_6_2_a2
Yu. N. Bratkov. On the existence of the classical solution of the hyperbolic Monge--Ampere equation on the whole. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 379-390. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a2/