Atomic theories of residuated semigroup families
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 627-632
Cet article a éte moissonné depuis la source Math-Net.Ru
A residuated semigroup is a partially ordered semigroup together with two binary operations $\backslash$ and $/$, such that the assertions $a\leq c/b$, $a\cdot b\leq c$, and $b\leq a\backslash c$ are equivalent. We formulate a necessary and sufficient condition for an arbitrary set of atomic formulas of the signature $\{\leq,\cdot,\backslash,/\}$ to be the atomic theory of some residuated semigroup family. We also consider some specific residuated semigroups and residuated semigroup families.
@article{FPM_2000_6_2_a19,
author = {M. R. Pentus},
title = {Atomic theories of residuated semigroup families},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {627--632},
year = {2000},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a19/}
}
M. R. Pentus. Atomic theories of residuated semigroup families. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 627-632. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a19/