Atomic theories of residuated semigroup families
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 627-632.

Voir la notice de l'article provenant de la source Math-Net.Ru

A residuated semigroup is a partially ordered semigroup together with two binary operations $\backslash$ and $/$, such that the assertions $a\leq c/b$, $a\cdot b\leq c$, and $b\leq a\backslash c$ are equivalent. We formulate a necessary and sufficient condition for an arbitrary set of atomic formulas of the signature $\{\leq,\cdot,\backslash,/\}$ to be the atomic theory of some residuated semigroup family. We also consider some specific residuated semigroups and residuated semigroup families.
@article{FPM_2000_6_2_a19,
     author = {M. R. Pentus},
     title = {Atomic theories of residuated semigroup families},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {627--632},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a19/}
}
TY  - JOUR
AU  - M. R. Pentus
TI  - Atomic theories of residuated semigroup families
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 627
EP  - 632
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a19/
LA  - ru
ID  - FPM_2000_6_2_a19
ER  - 
%0 Journal Article
%A M. R. Pentus
%T Atomic theories of residuated semigroup families
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 627-632
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a19/
%G ru
%F FPM_2000_6_2_a19
M. R. Pentus. Atomic theories of residuated semigroup families. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 627-632. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a19/