Inverse problem for an~ordinary differential operator on~$L_p$ ($p>2$)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 621-626
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the existence and uniqueness theorem for the potential determination by the spectre of an ordinary differential operator in $L_p$.
@article{FPM_2000_6_2_a18,
author = {V. V. Dubrovskii and A. S. Velikikh},
title = {Inverse problem for an~ordinary differential operator on~$L_p$ ($p>2$)},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {621--626},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a18/}
}
TY - JOUR AU - V. V. Dubrovskii AU - A. S. Velikikh TI - Inverse problem for an~ordinary differential operator on~$L_p$ ($p>2$) JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 621 EP - 626 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a18/ LA - ru ID - FPM_2000_6_2_a18 ER -
V. V. Dubrovskii; A. S. Velikikh. Inverse problem for an~ordinary differential operator on~$L_p$ ($p>2$). Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 621-626. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a18/