Inverse problem for an~ordinary differential operator on~$L_p$ ($p>2$)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 621-626.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence and uniqueness theorem for the potential determination by the spectre of an ordinary differential operator in $L_p$.
@article{FPM_2000_6_2_a18,
     author = {V. V. Dubrovskii and A. S. Velikikh},
     title = {Inverse problem for an~ordinary differential operator on~$L_p$ ($p>2$)},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {621--626},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a18/}
}
TY  - JOUR
AU  - V. V. Dubrovskii
AU  - A. S. Velikikh
TI  - Inverse problem for an~ordinary differential operator on~$L_p$ ($p>2$)
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 621
EP  - 626
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a18/
LA  - ru
ID  - FPM_2000_6_2_a18
ER  - 
%0 Journal Article
%A V. V. Dubrovskii
%A A. S. Velikikh
%T Inverse problem for an~ordinary differential operator on~$L_p$ ($p>2$)
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 621-626
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a18/
%G ru
%F FPM_2000_6_2_a18
V. V. Dubrovskii; A. S. Velikikh. Inverse problem for an~ordinary differential operator on~$L_p$ ($p>2$). Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 621-626. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a18/