A necessary condition of co-length finiteness of Lie algebra variety in the case of zero-characteristic field
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 607-616
This article examines how some characteristics of Lie algebra variety like co-length are connected with the variety structure in the case of zero-characteristic field. In particular, it is proved that co-length finiteness for the variety $V$ implies the inclusion $U_2\not\subset V\subset N_sA$, where $s$ is some natural number, and, as a consequence, the polynomial growth of the variety $V$.
@article{FPM_2000_6_2_a16,
author = {I. R. Khanina},
title = {A~necessary condition of co-length finiteness of {Lie} algebra variety in the~case of zero-characteristic field},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {607--616},
year = {2000},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a16/}
}
TY - JOUR AU - I. R. Khanina TI - A necessary condition of co-length finiteness of Lie algebra variety in the case of zero-characteristic field JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 607 EP - 616 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a16/ LA - ru ID - FPM_2000_6_2_a16 ER -
I. R. Khanina. A necessary condition of co-length finiteness of Lie algebra variety in the case of zero-characteristic field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 607-616. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a16/