A~necessary condition of co-length finiteness of Lie algebra variety in the~case of zero-characteristic field
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 607-616.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article examines how some characteristics of Lie algebra variety like co-length are connected with the variety structure in the case of zero-characteristic field. In particular, it is proved that co-length finiteness for the variety $V$ implies the inclusion $U_2\not\subset V\subset N_sA$, where $s$ is some natural number, and, as a consequence, the polynomial growth of the variety $V$.
@article{FPM_2000_6_2_a16,
     author = {I. R. Khanina},
     title = {A~necessary condition of co-length finiteness of {Lie} algebra variety in the~case of zero-characteristic field},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {607--616},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a16/}
}
TY  - JOUR
AU  - I. R. Khanina
TI  - A~necessary condition of co-length finiteness of Lie algebra variety in the~case of zero-characteristic field
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 607
EP  - 616
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a16/
LA  - ru
ID  - FPM_2000_6_2_a16
ER  - 
%0 Journal Article
%A I. R. Khanina
%T A~necessary condition of co-length finiteness of Lie algebra variety in the~case of zero-characteristic field
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 607-616
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a16/
%G ru
%F FPM_2000_6_2_a16
I. R. Khanina. A~necessary condition of co-length finiteness of Lie algebra variety in the~case of zero-characteristic field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 607-616. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a16/