Analytical form of the Eratosthenes sieve
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 583-597.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution of the problem for deducing the formula expressing $i+1$-st prime number $p_{i+1}$ through $p_k$, $1\leq k\leq i$, is offered. In so doing the integer table functions $\beta_k(n)$ and $\beta'_k(n)$ are introduced. Two recurrence formulas of prime $p_{i+1}$ are derived. The second formula holds true under the assumption that between the squares of two neighbouring prime numbers there is at least one prime number.
@article{FPM_2000_6_2_a14,
     author = {Kh. A. Smirnova},
     title = {Analytical form of the {Eratosthenes} sieve},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {583--597},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a14/}
}
TY  - JOUR
AU  - Kh. A. Smirnova
TI  - Analytical form of the Eratosthenes sieve
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 583
EP  - 597
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a14/
LA  - ru
ID  - FPM_2000_6_2_a14
ER  - 
%0 Journal Article
%A Kh. A. Smirnova
%T Analytical form of the Eratosthenes sieve
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 583-597
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a14/
%G ru
%F FPM_2000_6_2_a14
Kh. A. Smirnova. Analytical form of the Eratosthenes sieve. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 583-597. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a14/