On~some maximal operators, connected with the~operation of convolution
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 565-581.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some maximal operators, special cases of which include the maximal Hilbert operator and Hardy–Littlewood maximal function, have been considered in this article. We prove estimations that generalize Kolmogoroff and Riesz theorems under weaker conditions than in previous works of T. P. Lukashenko and M. Kotlyar.
@article{FPM_2000_6_2_a13,
     author = {T. Yu. Semenova},
     title = {On~some maximal operators, connected with the~operation of convolution},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {565--581},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a13/}
}
TY  - JOUR
AU  - T. Yu. Semenova
TI  - On~some maximal operators, connected with the~operation of convolution
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 565
EP  - 581
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a13/
LA  - ru
ID  - FPM_2000_6_2_a13
ER  - 
%0 Journal Article
%A T. Yu. Semenova
%T On~some maximal operators, connected with the~operation of convolution
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 565-581
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a13/
%G ru
%F FPM_2000_6_2_a13
T. Yu. Semenova. On~some maximal operators, connected with the~operation of convolution. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 565-581. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a13/