On the homogenization of some nonlinear variational problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 549-563
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Variational boundary value problems, in particular, the variational problems in perforated domains and the variational problems with degenerate integrands, are studied. The homogenization theorem is proved without using the technique of extension of solutions in Sobolev spaces. We use another approach, proposed by V. V. Zhikov.
@article{FPM_2000_6_2_a12,
     author = {M. E. Rychago},
     title = {On the~homogenization of some nonlinear variational problems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {549--563},
     year = {2000},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a12/}
}
TY  - JOUR
AU  - M. E. Rychago
TI  - On the homogenization of some nonlinear variational problems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 549
EP  - 563
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a12/
LA  - ru
ID  - FPM_2000_6_2_a12
ER  - 
%0 Journal Article
%A M. E. Rychago
%T On the homogenization of some nonlinear variational problems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 549-563
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a12/
%G ru
%F FPM_2000_6_2_a12
M. E. Rychago. On the homogenization of some nonlinear variational problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 549-563. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a12/