On the~homogenization of some nonlinear variational problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 549-563.

Voir la notice de l'article provenant de la source Math-Net.Ru

Variational boundary value problems, in particular, the variational problems in perforated domains and the variational problems with degenerate integrands, are studied. The homogenization theorem is proved without using the technique of extension of solutions in Sobolev spaces. We use another approach, proposed by V. V. Zhikov.
@article{FPM_2000_6_2_a12,
     author = {M. E. Rychago},
     title = {On the~homogenization of some nonlinear variational problems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {549--563},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a12/}
}
TY  - JOUR
AU  - M. E. Rychago
TI  - On the~homogenization of some nonlinear variational problems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 549
EP  - 563
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a12/
LA  - ru
ID  - FPM_2000_6_2_a12
ER  - 
%0 Journal Article
%A M. E. Rychago
%T On the~homogenization of some nonlinear variational problems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 549-563
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a12/
%G ru
%F FPM_2000_6_2_a12
M. E. Rychago. On the~homogenization of some nonlinear variational problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 549-563. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a12/