The basis of identities of the matrix algebra of the second order over $\mathbb Z_{p^2}$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 501-531
Cet article a éte moissonné depuis la source Math-Net.Ru
There are found 7 polynomials which generate the ideal of identities of the ring $M_2(\mathbb Z_{p^2})$.
@article{FPM_2000_6_2_a10,
author = {A. N. Oleksenko},
title = {The basis of identities of the matrix algebra of the second order over $\mathbb Z_{p^2}$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {501--531},
year = {2000},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a10/}
}
TY - JOUR
AU - A. N. Oleksenko
TI - The basis of identities of the matrix algebra of the second order over $\mathbb Z_{p^2}$
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2000
SP - 501
EP - 531
VL - 6
IS - 2
UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a10/
LA - ru
ID - FPM_2000_6_2_a10
ER -
A. N. Oleksenko. The basis of identities of the matrix algebra of the second order over $\mathbb Z_{p^2}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 501-531. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a10/