The basis of identities of the matrix algebra of the second order over $\mathbb Z_{p^2}$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 501-531.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are found 7 polynomials which generate the ideal of identities of the ring $M_2(\mathbb Z_{p^2})$.
@article{FPM_2000_6_2_a10,
     author = {A. N. Oleksenko},
     title = {The basis of identities of the matrix algebra of the second order over $\mathbb Z_{p^2}$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {501--531},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a10/}
}
TY  - JOUR
AU  - A. N. Oleksenko
TI  - The basis of identities of the matrix algebra of the second order over $\mathbb Z_{p^2}$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 501
EP  - 531
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a10/
LA  - ru
ID  - FPM_2000_6_2_a10
ER  - 
%0 Journal Article
%A A. N. Oleksenko
%T The basis of identities of the matrix algebra of the second order over $\mathbb Z_{p^2}$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 501-531
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a10/
%G ru
%F FPM_2000_6_2_a10
A. N. Oleksenko. The basis of identities of the matrix algebra of the second order over $\mathbb Z_{p^2}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 501-531. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a10/