Number systems in Abelian topological groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 319-356.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the paper is a formalization and a study of the indicated notion. Conceptually a number system in a given group must associate with each element a word (maybe infinite) in certain alphabet. Algebraic and topological structures on the group must be characterized only by means of this correspondence. The main notions are defined by analogy with the case of real numbers.
@article{FPM_2000_6_2_a0,
     author = {B. G. Averbukh},
     title = {Number systems in {Abelian} topological groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {319--356},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a0/}
}
TY  - JOUR
AU  - B. G. Averbukh
TI  - Number systems in Abelian topological groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 319
EP  - 356
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a0/
LA  - ru
ID  - FPM_2000_6_2_a0
ER  - 
%0 Journal Article
%A B. G. Averbukh
%T Number systems in Abelian topological groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 319-356
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a0/
%G ru
%F FPM_2000_6_2_a0
B. G. Averbukh. Number systems in Abelian topological groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 319-356. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a0/