The prime ($RI^*$-decidable) radical of the unitary group over a ring with involution
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 93-119
We establish a connection between the $RI^*$-decidable radical of the unitary group and the prime radical of a ring for the case of an associative ring with involution and $1/2$ containing a suitable system of elements analogous to elementary matrices. We demonstrate the connection between existence of a decidable radical of the unitary group and nilpotency of the prime radical of a ring.
@article{FPM_2000_6_1_a8,
author = {A. Yu. Golubkov},
title = {The prime ($RI^*$-decidable) radical of the~unitary group over a~ring with involution},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {93--119},
year = {2000},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a8/}
}
A. Yu. Golubkov. The prime ($RI^*$-decidable) radical of the unitary group over a ring with involution. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 93-119. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a8/