On the~approximate confidence intervals for the~unknown mean of stationary associated random field
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 63-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compare two families of random normalizations in the CLT, proposed in [2] for strictly stationary associated random fields. We show that one family is preferable for weakly dependent processes.
@article{FPM_2000_6_1_a5,
     author = {M. A. Vronskii},
     title = {On the~approximate confidence intervals for the~unknown mean of stationary associated random field},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {63--71},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a5/}
}
TY  - JOUR
AU  - M. A. Vronskii
TI  - On the~approximate confidence intervals for the~unknown mean of stationary associated random field
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 63
EP  - 71
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a5/
LA  - ru
ID  - FPM_2000_6_1_a5
ER  - 
%0 Journal Article
%A M. A. Vronskii
%T On the~approximate confidence intervals for the~unknown mean of stationary associated random field
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 63-71
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a5/
%G ru
%F FPM_2000_6_1_a5
M. A. Vronskii. On the~approximate confidence intervals for the~unknown mean of stationary associated random field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 63-71. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a5/