Maximal congruences on a~semifield of continuous positive functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 305-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the maximal congruences on a semifield $U(X)$ of continuous positive functions, which are defined on a topological space $X$. It is shown that the space of maximal congruences on $U(X)$ for a Tikhonov space $X$ is homeomorphous to the Hewitt extention of $X$.
@article{FPM_2000_6_1_a26,
     author = {I. A. Semenova},
     title = {Maximal congruences on a~semifield of continuous positive functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {305--310},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a26/}
}
TY  - JOUR
AU  - I. A. Semenova
TI  - Maximal congruences on a~semifield of continuous positive functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 305
EP  - 310
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a26/
LA  - ru
ID  - FPM_2000_6_1_a26
ER  - 
%0 Journal Article
%A I. A. Semenova
%T Maximal congruences on a~semifield of continuous positive functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 305-310
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a26/
%G ru
%F FPM_2000_6_1_a26
I. A. Semenova. Maximal congruences on a~semifield of continuous positive functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 305-310. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a26/