Constant curvature surfaces in the~constant curvature quasi-Riemann space and the~Klein--Gordon equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 299-303
Voir la notice de l'article provenant de la source Math-Net.Ru
A three-dimensional quasi-Riemann space of constant curvature can be Galilean, quasi-elliptic or quasi-hyperbolic depending on the sign of the curvature. The results obtained by the author for the Galilean case are generalized to the case of quasi-elliptic and quasi-hyperbolic spaces. It is shown that the curvature radius of special lines as well as the angle between asymptotic lines on the surface of constant negative (positive) curvature in quasi-elliptic (quasi-hyperbolic) space satisfy one-dimensional Klein–Gordon equation
$$
\psi_{tt}-\psi_{uu}=M^2\psi\quad (M=\mathrm{const},\ \psi=\psi(t,u)),
$$
and, in addition, for the surfaces of quasi-elliptic space, which have Gaussian curvature with absolute value equal to that of the space curvature, $M=0$ in the Klein–Gordon equation.
The existence of surfaces corresponding to any given solution of Klein–Gordon equation is shown, the families of surfaces for some special class of such solutions are constructed.
@article{FPM_2000_6_1_a25,
author = {N. E. Maryukova},
title = {Constant curvature surfaces in the~constant curvature {quasi-Riemann} space and {the~Klein--Gordon} equation},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {299--303},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a25/}
}
TY - JOUR AU - N. E. Maryukova TI - Constant curvature surfaces in the~constant curvature quasi-Riemann space and the~Klein--Gordon equation JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 299 EP - 303 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a25/ LA - ru ID - FPM_2000_6_1_a25 ER -
%0 Journal Article %A N. E. Maryukova %T Constant curvature surfaces in the~constant curvature quasi-Riemann space and the~Klein--Gordon equation %J Fundamentalʹnaâ i prikladnaâ matematika %D 2000 %P 299-303 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a25/ %G ru %F FPM_2000_6_1_a25
N. E. Maryukova. Constant curvature surfaces in the~constant curvature quasi-Riemann space and the~Klein--Gordon equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 299-303. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a25/