Constant curvature surfaces in the~constant curvature quasi-Riemann space and the~Klein--Gordon equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 299-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-dimensional quasi-Riemann space of constant curvature can be Galilean, quasi-elliptic or quasi-hyperbolic depending on the sign of the curvature. The results obtained by the author for the Galilean case are generalized to the case of quasi-elliptic and quasi-hyperbolic spaces. It is shown that the curvature radius of special lines as well as the angle between asymptotic lines on the surface of constant negative (positive) curvature in quasi-elliptic (quasi-hyperbolic) space satisfy one-dimensional Klein–Gordon equation $$ \psi_{tt}-\psi_{uu}=M^2\psi\quad (M=\mathrm{const},\ \psi=\psi(t,u)), $$ and, in addition, for the surfaces of quasi-elliptic space, which have Gaussian curvature with absolute value equal to that of the space curvature, $M=0$ in the Klein–Gordon equation. The existence of surfaces corresponding to any given solution of Klein–Gordon equation is shown, the families of surfaces for some special class of such solutions are constructed.
@article{FPM_2000_6_1_a25,
     author = {N. E. Maryukova},
     title = {Constant curvature surfaces in the~constant curvature {quasi-Riemann} space and {the~Klein--Gordon} equation},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {299--303},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a25/}
}
TY  - JOUR
AU  - N. E. Maryukova
TI  - Constant curvature surfaces in the~constant curvature quasi-Riemann space and the~Klein--Gordon equation
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 299
EP  - 303
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a25/
LA  - ru
ID  - FPM_2000_6_1_a25
ER  - 
%0 Journal Article
%A N. E. Maryukova
%T Constant curvature surfaces in the~constant curvature quasi-Riemann space and the~Klein--Gordon equation
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 299-303
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a25/
%G ru
%F FPM_2000_6_1_a25
N. E. Maryukova. Constant curvature surfaces in the~constant curvature quasi-Riemann space and the~Klein--Gordon equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 299-303. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a25/