About isomorphism $G\otimes A\cong G$ for vectorial groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 287-292
Voir la notice de l'article provenant de la source Math-Net.Ru
The necessary and sufficient conditions of isomorphism $G\cong G\otimes A$, where $G$ is a vectorial group and $A$ is a torsion free rank 1 abelian group are found.
@article{FPM_2000_6_1_a23,
author = {E. B. Malyshev and A. M. Sebel'din},
title = {About isomorphism $G\otimes A\cong G$ for vectorial groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {287--292},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a23/}
}
TY - JOUR AU - E. B. Malyshev AU - A. M. Sebel'din TI - About isomorphism $G\otimes A\cong G$ for vectorial groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 287 EP - 292 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a23/ LA - ru ID - FPM_2000_6_1_a23 ER -
E. B. Malyshev; A. M. Sebel'din. About isomorphism $G\otimes A\cong G$ for vectorial groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 287-292. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a23/