About isomorphism $G\otimes A\cong G$ for vectorial groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 287-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary and sufficient conditions of isomorphism $G\cong G\otimes A$, where $G$ is a vectorial group and $A$ is a torsion free rank 1 abelian group are found.
@article{FPM_2000_6_1_a23,
     author = {E. B. Malyshev and A. M. Sebel'din},
     title = {About isomorphism $G\otimes A\cong G$ for vectorial groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {287--292},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a23/}
}
TY  - JOUR
AU  - E. B. Malyshev
AU  - A. M. Sebel'din
TI  - About isomorphism $G\otimes A\cong G$ for vectorial groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 287
EP  - 292
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a23/
LA  - ru
ID  - FPM_2000_6_1_a23
ER  - 
%0 Journal Article
%A E. B. Malyshev
%A A. M. Sebel'din
%T About isomorphism $G\otimes A\cong G$ for vectorial groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 287-292
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a23/
%G ru
%F FPM_2000_6_1_a23
E. B. Malyshev; A. M. Sebel'din. About isomorphism $G\otimes A\cong G$ for vectorial groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 287-292. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a23/