Characteristics of pairs of operators, Lie hybrids, Poisson brackets and nonlinear geometric algebra
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 265-273
Cet article a éte moissonné depuis la source Math-Net.Ru
The article is devoted to various algebraic, geometric and geometroalgebraic structures, which appear in the context of the problem of description of pairs of linear operators. The relations between the problem and investigations of I. Batalin, A. Weinstein, M. V. Karasev and V. P. Maslov on the analogs of Lie theory for nonlinear Poisson brackets, L. V. Sabinin's program of the nonlinear geometric algebra and the infinite-dimensional symplectic geometry are explicated.
@article{FPM_2000_6_1_a20,
author = {D. V. Yur'ev},
title = {Characteristics of pairs of operators, {Lie} hybrids, {Poisson} brackets and nonlinear geometric algebra},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {265--273},
year = {2000},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a20/}
}
TY - JOUR AU - D. V. Yur'ev TI - Characteristics of pairs of operators, Lie hybrids, Poisson brackets and nonlinear geometric algebra JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 265 EP - 273 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a20/ LA - ru ID - FPM_2000_6_1_a20 ER -
D. V. Yur'ev. Characteristics of pairs of operators, Lie hybrids, Poisson brackets and nonlinear geometric algebra. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 265-273. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a20/