Interpolation polynomials in Hilbert space and some extremum problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 237-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

In abstract Hilbert space the whole set of the polynomial interpolants is constructed. In Hilbert space with measure the interpolation polynomial with minimum norm is found, the problem for the best approximation value of the linear continuous functional on a bounded convex set of the operator interpolants is solved. Interpretation of these results is considered for the multivariable functions.
@article{FPM_2000_6_1_a18,
     author = {V. V. Khlobystov},
     title = {Interpolation polynomials in {Hilbert} space and some extremum problems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {237--247},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a18/}
}
TY  - JOUR
AU  - V. V. Khlobystov
TI  - Interpolation polynomials in Hilbert space and some extremum problems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 237
EP  - 247
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a18/
LA  - ru
ID  - FPM_2000_6_1_a18
ER  - 
%0 Journal Article
%A V. V. Khlobystov
%T Interpolation polynomials in Hilbert space and some extremum problems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 237-247
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a18/
%G ru
%F FPM_2000_6_1_a18
V. V. Khlobystov. Interpolation polynomials in Hilbert space and some extremum problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 237-247. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a18/