About some approach to the~theory of Nikolski\v{i}--Besov spaces on homogeneous manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 207-223
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $M$ be a compact symmetric space of rank 1. We have defined the Nikolski\v{i}–Besov function classes $B_{p,\theta}^r(M)$, $r>0$, $1\leq\theta\leq\infty$, $1\leq p\leq\infty$, and we have obtained a constructive description of these classes in terms of the best approximations of functions $f\in L_p(M)$ by the spherical polynomials on $M$.
@article{FPM_2000_6_1_a16,
author = {S. S. Platonov},
title = {About some approach to the~theory of {Nikolski\v{i}--Besov} spaces on homogeneous manifolds},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {207--223},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a16/}
}
TY - JOUR
AU - S. S. Platonov
TI - About some approach to the~theory of Nikolski\v{i}--Besov spaces on homogeneous manifolds
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2000
SP - 207
EP - 223
VL - 6
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a16/
LA - ru
ID - FPM_2000_6_1_a16
ER -
S. S. Platonov. About some approach to the~theory of Nikolski\v{i}--Besov spaces on homogeneous manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 207-223. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a16/