About some approach to the theory of Nikolskiǐ–Besov spaces on homogeneous manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 207-223
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $M$ be a compact symmetric space of rank 1. We have defined the Nikolski\v{i}–Besov function classes $B_{p,\theta}^r(M)$, $r>0$, $1\leq\theta\leq\infty$, $1\leq p\leq\infty$, and we have obtained a constructive description of these classes in terms of the best approximations of functions $f\in L_p(M)$ by the spherical polynomials on $M$.
@article{FPM_2000_6_1_a16,
     author = {S. S. Platonov},
     title = {About some approach to the~theory of {Nikolskiǐ{\textendash}Besov} spaces on homogeneous manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {207--223},
     year = {2000},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a16/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - About some approach to the theory of Nikolskiǐ–Besov spaces on homogeneous manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 207
EP  - 223
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a16/
LA  - ru
ID  - FPM_2000_6_1_a16
ER  - 
%0 Journal Article
%A S. S. Platonov
%T About some approach to the theory of Nikolskiǐ–Besov spaces on homogeneous manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 207-223
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a16/
%G ru
%F FPM_2000_6_1_a16
S. S. Platonov. About some approach to the theory of Nikolskiǐ–Besov spaces on homogeneous manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 207-223. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a16/