The law of large numbers and the logarithmic law for arrays
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 195-206
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the asymptotic behavior of sums for arrays of i.i.d. random variables. We obtain conditions under which the law of large numbers for subsequences holds and give an example showing the impossibility to weaken them. Also we establish an analogue of the law of the iterated logarithm.
@article{FPM_2000_6_1_a15,
     author = {A. E. Mikusheva},
     title = {The~law of large numbers and the~logarithmic law for arrays},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {195--206},
     year = {2000},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a15/}
}
TY  - JOUR
AU  - A. E. Mikusheva
TI  - The law of large numbers and the logarithmic law for arrays
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 195
EP  - 206
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a15/
LA  - ru
ID  - FPM_2000_6_1_a15
ER  - 
%0 Journal Article
%A A. E. Mikusheva
%T The law of large numbers and the logarithmic law for arrays
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 195-206
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a15/
%G ru
%F FPM_2000_6_1_a15
A. E. Mikusheva. The law of large numbers and the logarithmic law for arrays. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 195-206. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a15/