A~semifield plane of rank~2 admitting nonlinear Baire involution
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 163-170
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a matrix representation of the regular set of a semifield plane of order $q^4$ with a kernel of order $q^2$ ($q=2^k$), where the semifield plane admits semilinear Baire involution. The possibility of coexistence of linear and semilinear Baire involutions in the group of autotopisms of a plane is studied.
@article{FPM_2000_6_1_a12,
author = {O. V. Kravtsova},
title = {A~semifield plane of rank~2 admitting nonlinear {Baire} involution},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {163--170},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a12/}
}
O. V. Kravtsova. A~semifield plane of rank~2 admitting nonlinear Baire involution. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 163-170. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a12/