On the lifetime of configurations in homogeneous structures
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 133-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the relationship between the lifetime of configurations and the number of states of a cell in homogeneous structures. For $K_V(n)$, which is a class of all homogeneous structures with $n$ states of the cell and the neighbourhood $V$ that includes all the vectors no longer than one, and $L_V(x)$, which is the reverse function for $x^{x^{|V|}}$, it has been established that the number $n\sim L_V(D)$ of states of the cell is necessary and sufficient in order that for any positive integer $d$, $ d\le D$, in the mentioned class of homogeneous structures, a structure $S$ could be found in which the lifetime of a certain one-cell configuration equals $d$.
@article{FPM_2000_6_1_a10,
     author = {A. Dumov},
     title = {On the lifetime of configurations in homogeneous structures},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {133--142},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a10/}
}
TY  - JOUR
AU  - A. Dumov
TI  - On the lifetime of configurations in homogeneous structures
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 133
EP  - 142
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a10/
LA  - ru
ID  - FPM_2000_6_1_a10
ER  - 
%0 Journal Article
%A A. Dumov
%T On the lifetime of configurations in homogeneous structures
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 133-142
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a10/
%G ru
%F FPM_2000_6_1_a10
A. Dumov. On the lifetime of configurations in homogeneous structures. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 133-142. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a10/