Convergence time to equilibrium for large finite Markov chains
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1135-1157.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence of finite Markov chains $\mathcal L(N)$ we introduce a notion of convergence time to equilibrium $T(N)$. For sequences that are constructed by truncation of some countable Markov chain $\mathcal L$ we find the convergence time to equilibrium in terms of Lyapunov function of the chain $\mathcal L$. We apply this result to queueing systems with limited number of customers: a priority system with several types of customers and Jackson network.
@article{FPM_1999_5_4_a9,
     author = {A. D. Manita},
     title = {Convergence time to equilibrium for large finite {Markov} chains},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1135--1157},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a9/}
}
TY  - JOUR
AU  - A. D. Manita
TI  - Convergence time to equilibrium for large finite Markov chains
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 1135
EP  - 1157
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a9/
LA  - ru
ID  - FPM_1999_5_4_a9
ER  - 
%0 Journal Article
%A A. D. Manita
%T Convergence time to equilibrium for large finite Markov chains
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 1135-1157
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a9/
%G ru
%F FPM_1999_5_4_a9
A. D. Manita. Convergence time to equilibrium for large finite Markov chains. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1135-1157. http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a9/