Generalization of classical orthogonal polynomials to the~case of two intervals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1103-1110
Voir la notice de l'article provenant de la source Math-Net.Ru
We have found polynomials which may be considered as generalizations of classical orthogonal polynomials to the case of two intervals. Namely, for some $n$ they have properties of classical Jacobi, Laguerre and Hermite polynomials (orthogonality of derivatives, solution of differential equations of second order).
@article{FPM_1999_5_4_a7,
author = {A. L. Lukashov},
title = {Generalization of classical orthogonal polynomials to the~case of two intervals},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1103--1110},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a7/}
}
TY - JOUR AU - A. L. Lukashov TI - Generalization of classical orthogonal polynomials to the~case of two intervals JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1999 SP - 1103 EP - 1110 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a7/ LA - ru ID - FPM_1999_5_4_a7 ER -
A. L. Lukashov. Generalization of classical orthogonal polynomials to the~case of two intervals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1103-1110. http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a7/