Generalization of classical orthogonal polynomials to the~case of two intervals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1103-1110.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have found polynomials which may be considered as generalizations of classical orthogonal polynomials to the case of two intervals. Namely, for some $n$ they have properties of classical Jacobi, Laguerre and Hermite polynomials (orthogonality of derivatives, solution of differential equations of second order).
@article{FPM_1999_5_4_a7,
     author = {A. L. Lukashov},
     title = {Generalization of classical orthogonal polynomials to the~case of two intervals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1103--1110},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a7/}
}
TY  - JOUR
AU  - A. L. Lukashov
TI  - Generalization of classical orthogonal polynomials to the~case of two intervals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 1103
EP  - 1110
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a7/
LA  - ru
ID  - FPM_1999_5_4_a7
ER  - 
%0 Journal Article
%A A. L. Lukashov
%T Generalization of classical orthogonal polynomials to the~case of two intervals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 1103-1110
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a7/
%G ru
%F FPM_1999_5_4_a7
A. L. Lukashov. Generalization of classical orthogonal polynomials to the~case of two intervals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1103-1110. http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a7/