The Berlekamp–Massey algorithm over commutative Artinian principal ideal rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1061-1101
The algorithm constructing the monic polynomial of minimal degree which generates the given sequense of the length $l$ over commutative Artinian principal ideal ring $R$ is presented. The complexity of the algorithm is $O(l^2 n)$ operations of $R$, where $n$ is the index of nilpotency of the radical of $R$. The algorithm is applied for construction of the canonical system of generators of the ideal of all polynomials annihilating the given linear recurring sequence over $R$.
@article{FPM_1999_5_4_a6,
author = {V. L. Kurakin},
title = {The {Berlekamp{\textendash}Massey} algorithm over commutative {Artinian} principal ideal rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1061--1101},
year = {1999},
volume = {5},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a6/}
}
V. L. Kurakin. The Berlekamp–Massey algorithm over commutative Artinian principal ideal rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1061-1101. http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a6/