The rate of Pringsheim convergence of multiple Fourier series of piecewise monotonic functions of many variables in the space $L$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1003-1013
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It has been earlier proved by the author that the Fourier series of piecewise monotonic functions of many variables converge in the sense of Pringsheim pointwise and in $C(T^m)$-metric faster than in the case of arbitrary continuous functions. The main result of the paper says that this is not valid for the Pringsheim convergence in $L(T^m)$-metric.
@article{FPM_1999_5_4_a3,
     author = {M. I. Dyachenko},
     title = {The~rate of {Pringsheim} convergence of multiple {Fourier} series of piecewise monotonic functions of many variables in the~space~$L$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1003--1013},
     year = {1999},
     volume = {5},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a3/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - The rate of Pringsheim convergence of multiple Fourier series of piecewise monotonic functions of many variables in the space $L$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 1003
EP  - 1013
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a3/
LA  - ru
ID  - FPM_1999_5_4_a3
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T The rate of Pringsheim convergence of multiple Fourier series of piecewise monotonic functions of many variables in the space $L$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 1003-1013
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a3/
%G ru
%F FPM_1999_5_4_a3
M. I. Dyachenko. The rate of Pringsheim convergence of multiple Fourier series of piecewise monotonic functions of many variables in the space $L$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1003-1013. http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a3/