Algorithms on finite sets of vectors and space points
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1259-1261
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we construct the computational algorithms on finite sets of vectors that allow to find the number of equivalence classes of these sets relative to the vector collinearity relation, and the number of two-dimensional subsets defined by all pairs of vectors from the set. We show the application of these algorithms to solution of two combinatorial problems for finite sets of space points.
@article{FPM_1999_5_4_a20,
author = {M. N. Maryukov},
title = {Algorithms on finite sets of vectors and space points},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1259--1261},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a20/}
}
M. N. Maryukov. Algorithms on finite sets of vectors and space points. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1259-1261. http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a20/