Theorems of Helly--Gallai's type
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1209-1226.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper different generalizations of Helly's theorem for families of sets defined by systems of equations are presented. We investigate the existence problem of a $k$-element set, which has non-empty intersection with any member of such family. Applications to combinatorics and combinatorial geometry are given.
@article{FPM_1999_5_4_a15,
     author = {V. L. Dol'nikov and S. A. Igonin},
     title = {Theorems of {Helly--Gallai's} type},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1209--1226},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a15/}
}
TY  - JOUR
AU  - V. L. Dol'nikov
AU  - S. A. Igonin
TI  - Theorems of Helly--Gallai's type
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 1209
EP  - 1226
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a15/
LA  - ru
ID  - FPM_1999_5_4_a15
ER  - 
%0 Journal Article
%A V. L. Dol'nikov
%A S. A. Igonin
%T Theorems of Helly--Gallai's type
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 1209-1226
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a15/
%G ru
%F FPM_1999_5_4_a15
V. L. Dol'nikov; S. A. Igonin. Theorems of Helly--Gallai's type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1209-1226. http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a15/