On logical description of geometric figures
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1191-1197.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the problem of equivalence of predicate logic formulas, used for description of geometric objects, constructed from a given set of basic figures by set-theoretic operations $\cap,\cup,\overline{\phantom{a}}$. A finite complete system of identities is obtained for a finite basis in the class of the above formulas with finite number of variables.
@article{FPM_1999_5_4_a13,
     author = {A. A. Shakirov},
     title = {On logical description of geometric figures},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1191--1197},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a13/}
}
TY  - JOUR
AU  - A. A. Shakirov
TI  - On logical description of geometric figures
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 1191
EP  - 1197
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a13/
LA  - ru
ID  - FPM_1999_5_4_a13
ER  - 
%0 Journal Article
%A A. A. Shakirov
%T On logical description of geometric figures
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 1191-1197
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a13/
%G ru
%F FPM_1999_5_4_a13
A. A. Shakirov. On logical description of geometric figures. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1191-1197. http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a13/