Formally integrable Mizohata systems of codimension~1
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1179-1189.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we prove that any formally integrable Mizohata system of codimension one $$\left \{ \begin{array}{@{}l@{}} \partial_1u=\epsilon_1ix^1\partial_nu+f_1, \\ \partial_2u=\epsilon_2ix^2\partial_nu+f_2, \\ \dots \dots \dots \\ \partial_{n-1}u=\epsilon_{n-1}ix^{n-1}\partial_nu+f_{n-1} \end{array} \right. $$ can be reduced by a local change of the variables to a system of the form $$\left \{ \begin{array}{@{}l@{}} \partial_1v^1+\partial_2v^2=\psi _1, \\ \partial_1v^2-\partial_2v^1=\psi _2 \end{array} \right. $$ and, consequently, to Poisson's equation in the plane.
@article{FPM_1999_5_4_a12,
     author = {I. B. Tabov},
     title = {Formally integrable {Mizohata} systems of codimension~1},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1179--1189},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a12/}
}
TY  - JOUR
AU  - I. B. Tabov
TI  - Formally integrable Mizohata systems of codimension~1
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 1179
EP  - 1189
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a12/
LA  - ru
ID  - FPM_1999_5_4_a12
ER  - 
%0 Journal Article
%A I. B. Tabov
%T Formally integrable Mizohata systems of codimension~1
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 1179-1189
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a12/
%G ru
%F FPM_1999_5_4_a12
I. B. Tabov. Formally integrable Mizohata systems of codimension~1. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1179-1189. http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a12/