Formally integrable Mizohata systems of codimension 1
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1179-1189
In the paper we prove that any formally integrable Mizohata system of codimension one $$\left \{ \begin{array}{@{}l@{}} \partial_1u=\epsilon_1ix^1\partial_nu+f_1, \\ \partial_2u=\epsilon_2ix^2\partial_nu+f_2, \\ \dots \dots \dots \\ \partial_{n-1}u=\epsilon_{n-1}ix^{n-1}\partial_nu+f_{n-1} \end{array} \right. $$ can be reduced by a local change of the variables to a system of the form $$\left \{ \begin{array}{@{}l@{}} \partial_1v^1+\partial_2v^2=\psi _1, \\ \partial_1v^2-\partial_2v^1=\psi _2 \end{array} \right. $$ and, consequently, to Poisson's equation in the plane.
@article{FPM_1999_5_4_a12,
author = {I. B. Tabov},
title = {Formally integrable {Mizohata} systems of codimension~1},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1179--1189},
year = {1999},
volume = {5},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a12/}
}
I. B. Tabov. Formally integrable Mizohata systems of codimension 1. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1179-1189. http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a12/