Stability of two-layer operator-difference schemes with symmetric and skew-symmetric operators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 979-991
Voir la notice de l'article provenant de la source Math-Net.Ru
Two-layer operator-difference schemes with weight parameters which contain symmetric and skew-symmetric operators are considered. Sufficient conditions and a priori estimates for stability are derived using the method of reduction to a three-layer operator-difference scheme. It is shown that the conditions are necessary ones for some particular cases. The results may be used for investigation of the grid problems approximating initial-boundary value problems of mathematical physics with convection transfer (of convection-diffusion type), including the problems with varying coefficients on various grids.
@article{FPM_1999_5_4_a1,
author = {N. V. Ardelyan},
title = {Stability of two-layer operator-difference schemes with symmetric and skew-symmetric operators},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {979--991},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a1/}
}
TY - JOUR AU - N. V. Ardelyan TI - Stability of two-layer operator-difference schemes with symmetric and skew-symmetric operators JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1999 SP - 979 EP - 991 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a1/ LA - ru ID - FPM_1999_5_4_a1 ER -
N. V. Ardelyan. Stability of two-layer operator-difference schemes with symmetric and skew-symmetric operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 979-991. http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a1/