Transitivity of action on modular vectors
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 765-773.

Voir la notice de l'article provenant de la source Math-Net.Ru

Series of groups with the following property are constructed: the group of invertible matrices over integral group ring of the group does not act transitively on the set of vectors whose coordinates generate the augmentation ideal of the group ring.
@article{FPM_1999_5_3_a7,
     author = {V. A. Artamonov},
     title = {Transitivity of action on modular vectors},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {765--773},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a7/}
}
TY  - JOUR
AU  - V. A. Artamonov
TI  - Transitivity of action on modular vectors
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 765
EP  - 773
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a7/
LA  - ru
ID  - FPM_1999_5_3_a7
ER  - 
%0 Journal Article
%A V. A. Artamonov
%T Transitivity of action on modular vectors
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 765-773
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a7/
%G ru
%F FPM_1999_5_3_a7
V. A. Artamonov. Transitivity of action on modular vectors. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 765-773. http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a7/