Linear optimal control problem with convex homogeneous functional
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 757-763.

Voir la notice de l'article provenant de la source Math-Net.Ru

The iterative method of solving the linear optimal control problem with convex homogeneous nonnegative functional is proposed. As the approach based on the Pontryagin maximum principle, this one is characterized by using supporting properties of convex sets and approximations of convex sets with a family of adjacent simplices.
@article{FPM_1999_5_3_a6,
     author = {G. V. Shevchenko},
     title = {Linear optimal control problem with convex homogeneous functional},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {757--763},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a6/}
}
TY  - JOUR
AU  - G. V. Shevchenko
TI  - Linear optimal control problem with convex homogeneous functional
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 757
EP  - 763
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a6/
LA  - ru
ID  - FPM_1999_5_3_a6
ER  - 
%0 Journal Article
%A G. V. Shevchenko
%T Linear optimal control problem with convex homogeneous functional
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 757-763
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a6/
%G ru
%F FPM_1999_5_3_a6
G. V. Shevchenko. Linear optimal control problem with convex homogeneous functional. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 757-763. http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a6/