Constructing real canonical forms of Hamiltonian matrices with two imaginary eigenvalues
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 687-716
If $A$ is a Hamiltonian matrix and $P$ a symplectic matrix then the product $P^{-1}AP$ is a Hamiltonian matrix. In this paper we consider the case where the matrix $A$ has a pair of imaginary eigenvalues and develop an algorithm which finds a matrix $P$ such that the matrix $P^{-1}AP$ has a particularly simple form, a canonical form.
@article{FPM_1999_5_3_a3,
author = {R. Coleman},
title = {Constructing real canonical forms of {Hamiltonian} matrices with two imaginary eigenvalues},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {687--716},
year = {1999},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a3/}
}
R. Coleman. Constructing real canonical forms of Hamiltonian matrices with two imaginary eigenvalues. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 687-716. http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a3/