On a~new constant in intuitionistic propositional logic
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 903-926.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classification theorem for the family of all Novikov complete extensions of the intuitionistic propositional logic in the language containing a single additional constant is proved. The algorithmic problem of the conservativeness of calculi in this enriched language over intuitionistic propositional logic is established to be decidable.
@article{FPM_1999_5_3_a18,
     author = {A. D. Yashin},
     title = {On a~new constant in intuitionistic propositional logic},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {903--926},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a18/}
}
TY  - JOUR
AU  - A. D. Yashin
TI  - On a~new constant in intuitionistic propositional logic
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 903
EP  - 926
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a18/
LA  - ru
ID  - FPM_1999_5_3_a18
ER  - 
%0 Journal Article
%A A. D. Yashin
%T On a~new constant in intuitionistic propositional logic
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 903-926
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a18/
%G ru
%F FPM_1999_5_3_a18
A. D. Yashin. On a~new constant in intuitionistic propositional logic. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 903-926. http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a18/