Numerical solution of a~time control problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 637-648.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an algorithm for solving the linear time control problem. This algorithm is a combination of fixed point method and quasi-Newtonian method. The former possesses a broad region of convergence and is utilized for a sufficiently wide class of functions, the latter has local superlinear convergence.
@article{FPM_1999_5_3_a0,
     author = {V. I. Boldyrev},
     title = {Numerical solution of a~time control problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {637--648},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a0/}
}
TY  - JOUR
AU  - V. I. Boldyrev
TI  - Numerical solution of a~time control problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 637
EP  - 648
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a0/
LA  - ru
ID  - FPM_1999_5_3_a0
ER  - 
%0 Journal Article
%A V. I. Boldyrev
%T Numerical solution of a~time control problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 637-648
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a0/
%G ru
%F FPM_1999_5_3_a0
V. I. Boldyrev. Numerical solution of a~time control problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 637-648. http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a0/