Specifity of the auto oscillatory processes in resonance hyperbolic systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 437-473
The new feature of dynamics of resonance hyperbolic boundary value problems — high mode buferness is established: at a suitable choice of parameters, any fixed number of stable cycles arising from a zero position of equilibrium on finite number of high modes is realized in the system.
@article{FPM_1999_5_2_a5,
author = {A. Yu. Kolesov and N. Kh. Rozov and V. G. Sushko},
title = {Specifity of the~auto oscillatory processes in resonance hyperbolic systems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {437--473},
year = {1999},
volume = {5},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a5/}
}
TY - JOUR AU - A. Yu. Kolesov AU - N. Kh. Rozov AU - V. G. Sushko TI - Specifity of the auto oscillatory processes in resonance hyperbolic systems JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1999 SP - 437 EP - 473 VL - 5 IS - 2 UR - http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a5/ LA - ru ID - FPM_1999_5_2_a5 ER -
A. Yu. Kolesov; N. Kh. Rozov; V. G. Sushko. Specifity of the auto oscillatory processes in resonance hyperbolic systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 437-473. http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a5/