On~singularity of solution to inverse problems of spectral analysis expressed with equations of mathematical physics
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 411-416
Voir la notice de l'article provenant de la source Math-Net.Ru
The inverse problem for the Laplacian under the Robin's boundary conditions is considered. We prove the following
Theorem. If $q_p$, $p=1,2$, are real twice continuously differentiable functions on $\bar\Omega$ and there exists a subsequence $i_k$ of positive integers such that $\|v_{i_k}(q_p)\|_{L_2(S)}\leq\mathrm{const}|\lambda_{i_k}|^{\beta}$, where $v_i(q_p)$ are orthonormal eigenfunctions of the operator $-\Delta+q$ in the case of Robin's boundary conditions with the eigenvalues $\lambda_i$, $i\in\mathbb N$, and $0\leq\beta4^{-1}$ then there exists an infinite subsequence $i_{k_{l_m}}$ of positive integers such that the conditions
$$
\lambda_i(q_1)=\lambda_i(q_2),\ \ i\neq i_{k_{l_m}},\quad
v_i(q_1)|_S=v_i(q_2)|_S,\ \ i\neq i_{k_{l_m}},
$$
imply $q_1=q_2$.
@article{FPM_1999_5_2_a3,
author = {V. V. Dubrovskii and L. V. Smirnova},
title = {On~singularity of solution to inverse problems of spectral analysis expressed with equations of mathematical physics},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {411--416},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a3/}
}
TY - JOUR AU - V. V. Dubrovskii AU - L. V. Smirnova TI - On~singularity of solution to inverse problems of spectral analysis expressed with equations of mathematical physics JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1999 SP - 411 EP - 416 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a3/ LA - ru ID - FPM_1999_5_2_a3 ER -
%0 Journal Article %A V. V. Dubrovskii %A L. V. Smirnova %T On~singularity of solution to inverse problems of spectral analysis expressed with equations of mathematical physics %J Fundamentalʹnaâ i prikladnaâ matematika %D 1999 %P 411-416 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a3/ %G ru %F FPM_1999_5_2_a3
V. V. Dubrovskii; L. V. Smirnova. On~singularity of solution to inverse problems of spectral analysis expressed with equations of mathematical physics. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 411-416. http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a3/