Binary self-similar fractal functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 589-595.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new type of fractal functions of one variable is defined, called binary self-similar. By algorithms of Walsh and Haar, from any self-similar function $f_0$, an orthonormal system $f_0,f_1,f_2,\ldots$ is build. The definition of binary self-similar function may be generalized for functions of two and three variables.
@article{FPM_1999_5_2_a13,
     author = {B. Kh. Sendov},
     title = {Binary self-similar fractal functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {589--595},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a13/}
}
TY  - JOUR
AU  - B. Kh. Sendov
TI  - Binary self-similar fractal functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 589
EP  - 595
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a13/
LA  - ru
ID  - FPM_1999_5_2_a13
ER  - 
%0 Journal Article
%A B. Kh. Sendov
%T Binary self-similar fractal functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 589-595
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a13/
%G ru
%F FPM_1999_5_2_a13
B. Kh. Sendov. Binary self-similar fractal functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 589-595. http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a13/