Binary self-similar fractal functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 589-595
Voir la notice de l'article provenant de la source Math-Net.Ru
A new type of fractal functions of one variable is defined, called binary self-similar. By algorithms of Walsh and Haar, from any self-similar function $f_0$, an orthonormal system $f_0,f_1,f_2,\ldots$ is build. The definition of binary self-similar function may be generalized for functions of two and three variables.
@article{FPM_1999_5_2_a13,
author = {B. Kh. Sendov},
title = {Binary self-similar fractal functions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {589--595},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a13/}
}
B. Kh. Sendov. Binary self-similar fractal functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 589-595. http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a13/