Multiplicity estimates for theta constants
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 557-562.

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for multiplicity of zero at the point $q=0$ for polynomials in logarithmic derivatives of theta constants is proved. The upper bound depends on degrees of the polynomials. The proof is based on a description in terms of theta constants of the general solution of a system of algebraic differential equations.
@article{FPM_1999_5_2_a11,
     author = {Yu. V. Nesterenko},
     title = {Multiplicity estimates for theta constants},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {557--562},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a11/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - Multiplicity estimates for theta constants
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 557
EP  - 562
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a11/
LA  - ru
ID  - FPM_1999_5_2_a11
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T Multiplicity estimates for theta constants
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 557-562
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a11/
%G ru
%F FPM_1999_5_2_a11
Yu. V. Nesterenko. Multiplicity estimates for theta constants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 557-562. http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a11/