Peculiarities of the~solutions of a~dynamical system
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 319-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonstationary motion of a dynamically asymmetric body with high lifting properties about center of mass under quadratic law of medium resistance is investigated. Using a linearized model of aerodynamic effect a parametric analysis of stationary motions of asymmetric body in free flight is carried out and the structure of stationary points set is found. Possible types of curves: special manifold, periodic and resonance regimes are investigated.
@article{FPM_1999_5_2_a0,
     author = {Yu. M. Okunev and V. A. Sadovnichii},
     title = {Peculiarities of the~solutions of a~dynamical system},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {319--361},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a0/}
}
TY  - JOUR
AU  - Yu. M. Okunev
AU  - V. A. Sadovnichii
TI  - Peculiarities of the~solutions of a~dynamical system
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 319
EP  - 361
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a0/
LA  - ru
ID  - FPM_1999_5_2_a0
ER  - 
%0 Journal Article
%A Yu. M. Okunev
%A V. A. Sadovnichii
%T Peculiarities of the~solutions of a~dynamical system
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 319-361
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a0/
%G ru
%F FPM_1999_5_2_a0
Yu. M. Okunev; V. A. Sadovnichii. Peculiarities of the~solutions of a~dynamical system. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 319-361. http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a0/