Peculiarities of the~solutions of a~dynamical system
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 319-361
Voir la notice de l'article provenant de la source Math-Net.Ru
Nonstationary motion of a dynamically asymmetric body with high lifting properties about center of mass under quadratic law of medium resistance is investigated. Using a linearized model of aerodynamic effect a parametric analysis of stationary motions of asymmetric body in free flight
is carried out and the structure of stationary points set is found. Possible types of curves: special manifold, periodic and resonance regimes are investigated.
@article{FPM_1999_5_2_a0,
author = {Yu. M. Okunev and V. A. Sadovnichii},
title = {Peculiarities of the~solutions of a~dynamical system},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {319--361},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a0/}
}
Yu. M. Okunev; V. A. Sadovnichii. Peculiarities of the~solutions of a~dynamical system. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 319-361. http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a0/