Ph.~Hall's theorem on transversals for modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 119-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary and sufficient condition for the semisimple module matching is obtained. Also the case of arbitrary modules over associative ring is considered. The proof is based on module theory and matroid theory.
@article{FPM_1999_5_1_a7,
     author = {A. \`E. Guterman and E. M. Kreines},
     title = {Ph.~Hall's theorem on transversals for modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {119--130},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a7/}
}
TY  - JOUR
AU  - A. È. Guterman
AU  - E. M. Kreines
TI  - Ph.~Hall's theorem on transversals for modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 119
EP  - 130
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a7/
LA  - ru
ID  - FPM_1999_5_1_a7
ER  - 
%0 Journal Article
%A A. È. Guterman
%A E. M. Kreines
%T Ph.~Hall's theorem on transversals for modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 119-130
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a7/
%G ru
%F FPM_1999_5_1_a7
A. È. Guterman; E. M. Kreines. Ph.~Hall's theorem on transversals for modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 119-130. http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a7/