On the~solvability of the~general word problem for a~cyclic subgroup of a~group with condition $C(6)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 39-46
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a group with condition $C(6)$. Then the problem of entry into any cyclic subgroup $H$ of the group $G$ is solvable.
@article{FPM_1999_5_1_a1,
author = {N. V. Bezverkhnii},
title = {On the~solvability of the~general word problem for a~cyclic subgroup of a~group with condition $C(6)$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {39--46},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a1/}
}
TY - JOUR AU - N. V. Bezverkhnii TI - On the~solvability of the~general word problem for a~cyclic subgroup of a~group with condition $C(6)$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1999 SP - 39 EP - 46 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a1/ LA - ru ID - FPM_1999_5_1_a1 ER -
%0 Journal Article %A N. V. Bezverkhnii %T On the~solvability of the~general word problem for a~cyclic subgroup of a~group with condition $C(6)$ %J Fundamentalʹnaâ i prikladnaâ matematika %D 1999 %P 39-46 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a1/ %G ru %F FPM_1999_5_1_a1
N. V. Bezverkhnii. On the~solvability of the~general word problem for a~cyclic subgroup of a~group with condition $C(6)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a1/