On the~solvability of the~general word problem for a~cyclic subgroup of a~group with condition $C(6)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 39-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group with condition $C(6)$. Then the problem of entry into any cyclic subgroup $H$ of the group $G$ is solvable.
@article{FPM_1999_5_1_a1,
     author = {N. V. Bezverkhnii},
     title = {On the~solvability of the~general word problem for a~cyclic subgroup of a~group with condition $C(6)$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--46},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a1/}
}
TY  - JOUR
AU  - N. V. Bezverkhnii
TI  - On the~solvability of the~general word problem for a~cyclic subgroup of a~group with condition $C(6)$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 39
EP  - 46
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a1/
LA  - ru
ID  - FPM_1999_5_1_a1
ER  - 
%0 Journal Article
%A N. V. Bezverkhnii
%T On the~solvability of the~general word problem for a~cyclic subgroup of a~group with condition $C(6)$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 39-46
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a1/
%G ru
%F FPM_1999_5_1_a1
N. V. Bezverkhnii. On the~solvability of the~general word problem for a~cyclic subgroup of a~group with condition $C(6)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a1/