On the~best local nonglobal rational approximation in the~space~$H_2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 4, pp. 1423-1426
Voir la notice de l'article provenant de la source Math-Net.Ru
For any natural number $k$ the function from the Hardy space $H_2$ is found that its rational approximation of $(k,1)$ degree with pole in $1/\sqrt{2}$ gives the best local nonglobal approximation in the set of all rational functions of $(k,1)$ degree.
@article{FPM_1998_4_4_a18,
author = {M. A. Nazarenko},
title = {On the~best local nonglobal rational approximation in the~space~$H_2$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1423--1426},
publisher = {mathdoc},
volume = {4},
number = {4},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a18/}
}
M. A. Nazarenko. On the~best local nonglobal rational approximation in the~space~$H_2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 4, pp. 1423-1426. http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a18/