On the~best local nonglobal rational approximation in the~space~$H_2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 4, pp. 1423-1426.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any natural number $k$ the function from the Hardy space $H_2$ is found that its rational approximation of $(k,1)$ degree with pole in $1/\sqrt{2}$ gives the best local nonglobal approximation in the set of all rational functions of $(k,1)$ degree.
@article{FPM_1998_4_4_a18,
     author = {M. A. Nazarenko},
     title = {On the~best local nonglobal rational approximation in the~space~$H_2$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1423--1426},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a18/}
}
TY  - JOUR
AU  - M. A. Nazarenko
TI  - On the~best local nonglobal rational approximation in the~space~$H_2$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 1423
EP  - 1426
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a18/
LA  - ru
ID  - FPM_1998_4_4_a18
ER  - 
%0 Journal Article
%A M. A. Nazarenko
%T On the~best local nonglobal rational approximation in the~space~$H_2$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 1423-1426
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a18/
%G ru
%F FPM_1998_4_4_a18
M. A. Nazarenko. On the~best local nonglobal rational approximation in the~space~$H_2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 4, pp. 1423-1426. http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a18/